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Dynamical susceptibility of solid ferrocolloids

Andrey Yu. Zubarev and Larisa Yu. Iskakova
Ural State University, Lenina Avenue, 620083 Ekaterinburg, Russia
(Received 27 December 1999; published 24 May 2001

A theoretical analysis of the dynamical magnetic susceptibility of a frozen nondilute ferrocolloid is pre-
sented. The steric and dipole-dipole interactions between ferroparticles are taken into account. Two systems are
studied. The first is the homogeneous solid ferrocolloid with separate individual particles. The second is a
ferrocolloid with heterogeneous chainlike aggregates. The effect of the magnetodipole interparticle interaction
on the real and imaginary parts of the dynamical susceptibilities of these systems is estimated.
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[. INTRODUCTION the orientation of their axes of light magnetization after
freezing remain as before.

The interest of investigators in systems of dipole particles
embedded in a solid matrix has increased in recent years
(see, for example, Refgl-8]). A ferrocolloid (magnetic lig-
uid) in a frozen solvent is an example of such a system. As The initial susceptibility of ferrocolloids solidified in a
soon as the solvent is frozen, both the space arrangement omfagnetic field arbitrary in both magnitude and direction have
the ferromagnetic particles and the orientations of their axebeen studied in Ref9]. In this part of the article we focus
of easy magnetization become fixed. Thus, the static andur attention on systems frozen in a high magnetic field. For
dynamical magnetic susceptibilities of such systems may difthis reason the easy axes of magnetization of all particles in
fer essentially from those of ferrocolloids in solvents in athe solid colloid are aligned along the field. We suppose that
liquid state. the current magnetic field has the same direction.

The initial susceptibilities of very dilute solid ferrocol- Let ¢ be the unit vector aligned along the magnetic mo-
loids were studied ii4,5]. An analysis of the susceptibility mentm; of theith particle, andf,(€) the one-particle distri-
of moderately concentrated colloids taking into account theébution function normalized to unity. The macroscopic mag-
magnetodipole interaction between particles was performedetization of the colloid is
in Ref.[9]. Those calculations were made under the assump-

I. HOMOGENEOUS FERROCOLLOIDS

tion that the magnetic interparticle interaction is small or _
At . M=mc(e),
moderate, and the external field is weak. However, experi- &
ments[6—8] demonstrate that in many real solid ferrocol-
loids these interactions play a very important role in the mac- _ [ of-(erd
roscopic response to an external field. In the view of the (&)= | efi(e)de,

authors of[6—§|, the results of their experiments suggest a
dipole-glass state of the systems under study..H_owever, Var\i/Y/herec is the number of particles in unit volume of the
ous heterogeneous aggregates example, chainlike, drop- colloid.
!lke, etc_) can arise in the colloid |f_ the magnetic interparticle The distribution functionf; can be derived using the
interaction is strong before freezing. The effect of these a9¢okker-Planck e -

. . ; . quation,
gregates on the macroscopic properties of solid ferrocolloids
is not understood theoretically. To study this effect is one of
the aims of our work. Below it is shown that the presence of
chainlike aggregates can induce effects similar to those in a
dipole-glass state.

As mentioned above, previously the dynamical suscepti-
bilities of solid ferrocolloids have been studied theoretically
only for a very weak external field. However, the magnetic
field acting on the colloid is often not weak and thus account m
must be taken of the influence of the field on the dynamical =, D=(T, J=
response functions of the colloid. The second aim of this
work is to derive the nonlinear response functions to moder-
ate magnetic fields of homogeneous moderately concentratédere { is a kinetic coefficientT is the absolute temperature
ferrocolloids. in energy unitsH is the external magnetic fieldi,(e) and

Consider a system dfl identical spherical single-domain u;(€) are the energy of magnetic anisotropy of a particle and
particles. The absolute value of the magnetic moment of a the total energy of a particle in the field, andU(e) is the
particle is constant. The colloid becomes frozen instantamean energy of dipole-dipole interaction of a given particle
neously; therefore the space arrangement of the particles andth the others.

of 4
= £I(f1duy) + £I(F1duy) +DJI?f 4,

u(e)=—T(ag)tus, Uu(e)=NU(e), 2

e —.
oe
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Directing the axisOz along the current magnetic field 1 t
(and, therefore, along the easy axis of magnetization of the n.(t)= a0 ni(O)Q(O)ﬁLJ W= (s)q(s)ds|,
particle and using the well-known approximation foy, we 0
can write .
q(t)=exr1(f [W+(S)+W(S)]d5),
u,=—Ke?, ©) 0
()
whereK is the coefficient of magnetic anisotropy of the par- W.=C. exg—(c*a)]
ticle. By definition D -
c gT( ) )(O‘ 1/2
+ = +ta+20) —
U@ [ wee e rlodad. @ : m

Substituting Eq(7) into Eq. (5) and then into Eq(4), after
Herew is the dipole-dipole interaction potential of two par- calculations described in Rg®], we get
ticles with orientation vectors ande;, r is the radius vector

connecting them, anf}, is the conditional binary distribution U= 38 - ¢
function. In order to determiné, we need to formulate a Y vey[n. () —n-_(1)],
two-particle Fokker-Planck equation, which involves a three- (9)
particle equation, etc. A m2
Here, as in Ref[9], we assume the interparticle interac- v=—3as =
. : . . 3 7 =
tion to be moderate or weak. Therefore, in the first approxi- (2a)°T

mation for this interaction we come to
The dimensionless parametgrcharacterizes the ratio of the
1 energy of the dipole-dipole interaction of two closely spaced
fo(e,rle)=—=p(e), r>2a, particles to the thermal energy of the system.
v Inserting Eq.(7) into the second relation of E@3) and
(5 then into Eq.(2), taking into account that nowa(e) = ae,
f,=0, r<2a, one can rewrite Eq(2) as follows:

wherea is the radius of the particle/ is the volume of the ﬁ:U(flJUle)*' DJ?f,,
colloid, and p is the single-particle distribution function Jt
without the interparticle interaction. The last condition in Eq.
(5) takes into account that the particles do not overlap. Ure= — (@e€) + Uy, (10)
The Fokker-Planck equation faris
ag(t)=a(t)+8py[n.(t)—n_(1)].
Jd
a—?zg’J(pJul)JrDsz. (6)  Here p=cv is the volume concentration of the particles.
Equation(10) coincides formally with Eq(6) with the effec-
tive dimensionless field, instead of the real field.
The exact solution of this equation is unknown. Here we Repeating arguments identical to those for &g, we can
consider particles with a large magnetic anisotropy for whichyrite
the strong inequalitiee=K/T>1, o>« hold good.
Since 0>1, the probabilities for the particles to be in  f (et)=q.(t)5(e,~1)+q_(t)5(e,+1), q,.+g_=1.

statese,= =1 are much greater than those for other states. (11)
Therefore in the first approximation of the small parameter
1/o we can write The expressions fay.. can be obtained from Eg8) for n..
by using the effective fieldy, instead ofa.
p(et)=n,(t)d(e,—~1)+n_(t)d(e,+1), Substituting Eq(11) into Eq. (1), we have
(7) p
n.(H)+n_(t)=1, (e)(H=0.()—q-(1), M(H)=m_(e)(t). (12
whered(x) is the delta function and.. are probabilities for Thus, in order to calculate the magnetizativhwe need,
the particle to be in states,= =1, respectively. first, to determinen.. . Second, taking into account Ed40)
Repeating the reasoning of R¢g], and taking into ac- and(8), we deriveq.. (to do this, we replace.. by q. and
count thata<o, we arrive at the relations a by ag) and, finally, use relation€l2).

061507-2



DYNAMICAL SUSCEPTIBILITY OF SOLID FERROCOLLOIDS

I1l. NONLINEAR RESPONSE OF HOMOGENEOUS

FERROCOLLOIDS TO AN OSCILLATING FIELD

The foregoing procedure can be realized numerically for
arbitrary a(t) («<< o). Here we study the nonlinear response

to a moderate or weak oscillating field,

a(t)=agcoswt, ag<l.

Neglecting terms of magnitude of the order @f/o and

less, using Eq(8) we can easily obtain
W, (s)+W_(s)= 7, * cosha(s),
W, (s)—W_(s)= 1, sinha(s),

112
o exp(o) o T

To=T ————, .
0 12 47K

In a quadratic approximation ia we get

q(s) F’(ljs )

——=exp — [ cosh d

q() ¥ 7, ), coshey)dy
—oxd Y14 JS 2(s)d
=eX 7'_0 2—7_0 ta (S) S|,
t

[ tw (9-w.sy1as

_exp(—t/7p) [t F{i)
- 70 J'Oex 70 (s)

N () —n_()=[nyo(t) —Nn_o(t)]

xXexp — —
70
exp(—t/7g) [t S
+———| exg —
TO 0 ’TO

a(s)

wheren_., are random initial values af.. . Substituting Eq.
(13) into Eq.(15), after simple but cumbersome calculations

we have fort>r

n.(t)—n_(t)=ag(B1+ a(z)(p’)COSwt-l- ag

X (B + ade")sinwt+ adB) cos 3wt

+ a3 By sin 3wt,

1+ = aZ(S —f dy) (15
1 s
1+2—7_0J0a2(s)ds)

X1+12 +1f52 d
52 (s) Z—Tota(Y)y,
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1 T

1+(w7)2, Bl:l-l—(wr)z’

L1 (B1 2}

B1=

!

¢ =P

( __ﬁl 2 P1

(16)

P"=wTp;

1, 1(By)?
p2+§,81)p3—§ pll },

P2

! ! 3 2 " 3 1
B2=B1P1 4B,+§(w7') . B3=PB1p: 4p2 al
1

1 1 1
T1r9(wn? P26 a1t (en?)

(w7)?

1+(a)7')2.
Substituting Eq(16) into Eq.(9) and then into Eq(10), and
using a, instead ofe in Eq. (15), we determiney, andq_ .
Having performed calculations in the cubic approximation in
ag for t> 75, we obtain
(e,)=ao(B]+ a5®')coswt + ay(B) + a3d")sinwt
+ 3B} cos 3wt + 3B} sin 3wt, (17)
where
= B1+8p [ (BD>+L1],
Bi=81+8py(B1B1+L]),
Q=" +8py(4B191+L5),

O"=¢"+8py(3B1¢’ + Bl L)),

B,=B,+8py

ﬁé—3w7ﬁ£)
3 B+l ==
PibztLs 1+ (3wT)?

B;=B5+8py

1o " BI2,+3wTBi
3pifotlyt—————

1+ (3w7)?
—-(B)?%  Li=Bipi,
= wr{[P1P3(iB1+P2) —P2B1]— 181},

Ly={p1pa[ P2+ i(@7)2B11+ p2B1}) + B1e",
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FIG. 1. Real(a) and imaginary(b) parts of the normalized dy- FIG. 2. Temperature dependence of the normalized components

namical susceptibility of a homogeneous ferrocolloid to the signalf the susceptibility of a homogeneous ferrocolloid on the signal
frequencyw vs this frequency wherr=1. Solid and dashed curves frequency whenw7°=0.1. Solid and dashed curves correspond to
correspond toy=0 and 8ryp=1, respectively. Figures near curves y—g,m2/(yK)=0 and 0.25, respectively. Figures near curves are
are values ofrg. values of dimensionless field amplitud8= o, /o

Let us expand the magnetization in a Fourier series,  jyerparticle interaction. Our estimations show that if the
field « is not largeys are much less thay;.

M(t)zz [M/ cogwnt)+ M7 sin(wnt)], (18) Figure 1 shows that the interparticle interaction increases
n the response functioy; when o is small enough. Such a
and denote result for the stationary susceptibility of liquid ferrocolloids
is well known(see, for example, Refg10-13). The imagi-
M/ M7 nary party; of the susceptibility to the signal frequency
Xn(@)= Hy' Xn(®)= Hy' (19 increases, whereas the frequency corresponding to the maxi-

mum of x] decreases when the prodyey increases. This
Equations(19) are the definitions of the nonlinear reg, means that an increase of magnetic interparticle interaction
and imaginaryy/, parts of the dynamical response functionsin h_omo_geneous ferrO(_:oIIoids Ie_ads to an increase of the ef-
corresponding to the frequeneyw multiplied by the signal  fective time of magnetic relaxation of these systems.

frequencyw. Using Eq.(17), we have Figure 2 shows that the temperature dependenceg, of
and x; have maxima. This conclusion is consistent with the
x1=0o(Bi+aj®)y,, results of experimentl—3,6—§. The temperatures of these
maxima increases with increasing interparticle interaction. It
Xi=0o(B{+ajd")y,, should be noted that these maxima were interpret¢dJias
signs of a dipole-glass state in the solid ferrocolloid. How-
X5=a50Byy,, (200 ever, they occur even in a single-particle approximation.
Therefore, to explain the temperature maximaydf is not
n__ 2 " . .
X3~ ®0B72Ye necessary to use the hypothesis of a dipole-glass state of the
ferrocolloid.
m’n  6py
v K g IV. FERROCOLLOIDS WITH CHAINLIKE AGGREGATES:
. " . . MODEL AND DISTRIBUTION FUNCTION OVER THE
The results of some calculations pf and x] are given in CHAIN SIZE

Figs. 1 and 2. Relation0) and Figs. 1 and 2 allow us to
draw the following conclusions. First, the initiakg— 0) Let us consider an equilibrium liquid magnetic ferrocol-
response functiong, corresponding to the signal frequency loid with chainlike aggregates. Here we adopt the following
have the Debye form with the characteristic timgprovided  assumptions. First, we assume that the volume concentration
that the interparticle dipole-dipole interaction is negligible p of the particles is small and any interaction between par-
(py—0). If ag and(or) py are not negligible, these response ticles in different chains may be neglected. Second, we treat
functions lose the Debye form. It should be stressed that thithe chains as straight aggregates consisting of contacting par-
result is mathematically strict. It is also interesting to noteticles and ignore the fluctuations in their shape. The condi-
that the initial susceptibility of a nondilute liquid ferrocolloid tions of validity of this approximation will be determined
has the Debye form with the relaxation time depending orfurther. Third, we suppose that the colloid was solidified
pv[10,11]. rapidly and in the solid state it has the same inner structure
Second, the functiongs corresponding to the response to as in the liquid state. Next, we assume that in the liquid state
the frequency @ lack the Debye form even in the absence ofthe dipole-dipole interaction between contacting particles is
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large and the inequalitieg>«,y>1 hold good. P . . . .
Treating the chains as heterogeneous fluctuations and us- ¢

ing the well-known Frenkel theoryl4] of such fluctuations,

we represent the free energy per unit volume of the liquid 0.1

ferrocolloid as follows: )

F=T>,
n

gnv

_) +gnfn

o . (21 0.05

gnln

Here n is the number of particles in the chaig, is the
number ofn-particle chains in the unit volume, arig is the 0
“internal” energy of the chain. The first term in brackets in
Eq. (21) stands for the entropy of a gas particle chains
due to their translational motion.
In order to calculate,, we use the nearest-neighbor ap-

proximation, taking into account the dipole-dipole interac-I . I i o
tion only between directly adjacent particles in the chain eSS Interparticle interaction parametey; which is the value of at

- . . . . the temperature of solidification.
Simple estimates show that for an unlimited straight chain
the relative error of this approximation is less than 20%. FORNhere
short chains the error is smaller.

FIG. 3. Critical volume concentratigy, of ferroparticles for the
model of straight chain aggregates, as a function of the dimension-

Because the dipole-dipole interaction parametexlarge, 2y cosha + sinha— \[(2y cosha + sinha)2— 4y?
one can suppose that the magnetic moments of all particles x= 5 ,
are aligned in one direction—along the chain axis. There- y

fore, the n-particle chain can be represented as a straight — ap exp2) 25)
aggregate with the magnetic momenh directed along the y=ap Y-

axis of this aggregate. ) . ) The mean number of particles in the chain is
The dimensionless free energy of interaction of this ag-
> ng,

gregate with the magnetic field is
i n ap exp2y)
pSinften) (ny= = . (26)

an > gn X [X"sinhan)/n]
In the nearest-neighbor approximation the dimensionless en- " "
ergy of the dipole-dipole interactions of all particles in the  Using well-known results from the theory of polymer
chain is chains, one get the estimdte 2dy for the persistent length

| of the chain. Thermal fluctuations in shape for such a situ-

fa=—2y(n—1). ation are small and therefore the chain can be treated as a

straight rod. Ifl >d(n), this approximation is acceptable for
the ensemble of chains. Thus we can use the following cri-

m

The total internal free energy is

sinh( an) terion for the model of the chains as straight aggregates:
fo=fptfg=—|In——+2y(n—-1)]. (22
an (n)<2y.
It should be noted that it is not difficult to estimatg Let us denote by, the particle volume concentration for

without the nearest-neighbor approximations, taking into acyich (ny=21y. If p<p., then(n)<2y and the model can

count the magnetodipole interactions of all particles in theye ysed. The results of calculations mf for zero field are
chain. The results obtained are quantitatively close to oursnown in Fig. 3.

but the relations fof 4 andf,, become very cumbersome. For
this reason we use the simple and physically adequate ap-
proximation(22).

At equilibrium the distribution functiorg, should mini-
mize F under the normalization condition Let us consider an-particle straight chain directed at the
angle 0 to the external field. Let the strong inequalities
o>1>a hold good. Because in the liquid state of the colloid,
when the chains are formed, the energies of both interparticle
interaction and magnetic anisotropy of the particles are large,
After calculations we have we can suppose that the easy axes of magnetization of all

. particles in the chain are aligned along the chain axis.
X sinh(an) exp(—27) (24) In the framework of accepted approximations the energy
Gn v an v of one particle in the chain is

V. HIGH-FREQUENCY SUSCEPTIBILITY OF SOLID
FERROCOLLOIDS WITH CHAINS

; ngn=§- (23)
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m2 W_=Wgexp(—o—a CcoSé— uyB),
e(6)=—| m(e-H)+K(er)?+ > :
T (2a)%)°
3 _1 1
" ek [ K
x[3(eg)(gé) —(e-e)]], kiT#k |j—K]
(ZK)S/Z
m m; Wo=&——.
e=—, g=—, m=|m|=|mj=const. (27) (2mT)Y?
m m

H d th i ts of a ai dth The summation in Eq29) is carried out over all particles
rérem andm, areé the magnetic moments ot a given and €, o opain. Strictly speaking, the energy of interaction of a
jth particle in the chain, respectivel¥, is the unit vector

) ; . iven particle with the others depends on its placember
directed from the center of the given particle to the center o b b b

) . . - . in the chain. Therefore, the parametBr =2 i.¢l]
the jth particle, andw is the unit vector aligned along the —)k|*3 must be used here insteadgﬁ To ;)i@rﬁé)lify]'clgli((:llﬂ-
easy axis of magnetization of the particle. The summation I$tions we use the mean valy@s of B, over all particles.

performed over all particles in the chain except the one under In the framework of the approximation used the projec-

consideration. . . . tion of the mean orientation vector of tinegparticle chain on
Because the energy of magnetic anisotropy of the paruclﬁ1e chain axis is

is large, two deep potential pits arise corresponding to orien-
tation of the particle magnetic moment along and opposite to
vectorv. Hence, as above, the orientation distribution func-
tion ¢(€) can be written as

Mn=P+—P-. (32)
Combining Egs.(30) and (31), we arrive at the following
e(e)=p.de—v)+p_dse+v), p.+p.=1, (29 nonlinear equation fop, :

wherep.. are the probabilities for the particle to be in states dun 1 .
e=*v, respectively. Gt = 7gLHnCOSHlay+ Buypn) =sinfay+ Boypn)],

These probabilities can be determined using the appropri-

ate Fokker-Planck equation for the given particle. This equa- 112

L . . . expo) T

tion includes the energy. Because of the dipole-dipole in- To=1°——>, 1°=——, ay=acosd. (32)
teraction term in Eq(27), this one-particle Fokker-Planck ot? &K

equation involves a similar two-particle equation, and so on.
In order to break this chain of equations and to get a When a=0, the stationary solution of Eq32) satisfies
constructive approximate solution, let us average @3)  the equation
over all orientations of the moments of all particles in the
chain except the one under consideration. After this averag- Ho=tanh Bnypo)- (33
ing Eq. (27) can be rewritten as
If the productB,,y is large enougltonly for this situation can

5 1 one expect the occurrence of chains in a co)loitis equa-
e=—T|(ea)+a(ea)®+ 1y, —[3(e&) (unéj) — (epn) 1|, tion has a nonzero solution. That is, this is the case of inter-
I
est to us.
) Let us writex,= up,— wo. If |X,| <o anda<1l, Eq.(32)
mH K m can be rewritten as
a=—, o==, y= : (29
T T (2a)°T
dx, 1 N 1
=(g): i i ——=——Xgtayg————,

where u,=(€); is the mean value of the unit vector of the dt T A oS By i)

moment orientation in the chain.

Writing in the Fokker-Planck equatiai®) ¢ instead ofp (34)
and ¢ instead ofu;, and using the Kramers method and Tin= 7o .
repeating the reasoning of Ré&], we get cosh Bnymo){1+ vBal motanh( Bnypmo) — 11}

dp. The dynamical equation82) and (34) describe response of
dt = W+P+tw_p_, the chain to a weak external field whemn, is in the vicinity
of the initial equilibrium valuex uy. This means that the
dp_ period of the oscillating field must be much less than the
ar —W_p_+tWw.p;. (30 characteristic time of reorientation f, in the direction op-
posite to the initial direction of this vector. This time will be
Here estimated below.
Let o= agexp(wt). The projectiorxy,, of x on the direc-
W, =Wgexp(— o+ acosf+ uyBn), tion of this field is
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FIG. 4. Frequency dependences of rél and imaginary(b) ot

parts of the high-frequency initial dynamical susceptibility of a fer-
rocolloid with chains(solid lineg and with single individual par-
ticles (dashed lineswhen =5, y,=3, y=3. Figures near curves
are values op.

FIG. 5. The same as in Fig. 4 wher0.05. Figures near curves
correspond toy= vy,.

creases the susceptibility of ferrocolloi¢isee, for example,
Refs.[9-13] and Figs. 1 and)2 In order to explain this case

Xun=Xn COS 0,  Xn= Knato COS 0 expliwt), let us rewrite Eq(32) for small a as follows:

oo , Tgn 1 din 1du,
Kn=Kpn—iK), K= , S
oo " " 7o COSH Bryud) 1+ (w,)? dt 7o dt

Kn=oT K} - (35 Up=Upotayu,,

39
In order to determine the high-frequency complex suscepti- 39
bility x of the colloid, one needs to average relati@b)
over all orientations and sizes of the chains.

For the sake of definiteness, let us suppose that this col-
loid was solidified in zero magnetic field. Therefore, the u :f[ sink( )— coshi )]d
probabilities of all§ are identical. In view of this fact, we get n Kn Bnyin Bnyin)ldpn.
for the macroscopic magnetization

Uno= f [ n COSH Bnypen) —SINN( Brymn) Jdun,

Due to the strong inequalitg,y>1 the effective poten-
m tial U, as a function ofu, has two deep pits and a high
MZE ; XNy = xH. (30 parrier between them. These pits correspond to solutions
* o of Eq.(33). When the producB,,y increases, the shape
Substitutingx,, from Eq. (35) into Eq. (36), we arrive at the of the potentialU,, near + u, becomes sharper and the
following expression for the effective complex high- valueu,(ue) decreases. The relaxation@f to + ug, there-

frequency susceptibility: fore, becomes fastdthe time r,,, decreasgsand it is more
difficult for the external field to make a deflectiqy, from
_ 3 2 3 its initial value. Therefore, the corresponding susceptibility
X= 77 n *nNGhn (37 decreases. It should be noted that a decrease of the initial

susceptibility (normalized top) of solid ferrocolloids was
Using Egs(24) and(25), we find the distribution functiog,  observed in the experiments of RE3).

for the colloid frozen in zero field: The temperature dependencesydfare shown in Fig. 6.
N The temperature corresponding to the maximuny'ds seen
In=Xo €XP(—270), to increase with an increase of the interparticle interaction.
(38)
1+2yy—vV1+4y, 3
Xo= o . Yo=pexp2yy). VI. LOW-FREQUENCY SUSCEPTIBILITY

In this section we will estimate the ferrocolloid complex

Here and belowy, is the value ofy at the temperature of susceptibility corresponding to the response to a magnetic
colloid solidification. field with a period that is less than or of the order of the

The frequency dependences of the rgablnd imaginary characteristic time of crossing over the barrier of the effec-
X' parts ofy are given in Figs. 4 and 5. These figures dem-tive potentialU,o. This time will be estimated.
onstrate that an increase of interparticle interaction leads to a As mentioned above, the dynamical equati8f) cannot
decrease of susceptibility normalized ggprovided that the describe this crossing, which can take place only due to the
signal frequency is small enough. It is a somewhat unusuaction of thermal fluctuations gk,. In order to take them
result because, as a rule, the magnetodipole interaction inrto account we use the method of random forces.
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2o 1 /p By definition, the mean moment of the particle in the chain is

0.03 0.035
5 2 - Mn:f pnFrdun=P.—P_. (44)
0.02 | / \\
0025 H Combining the first two relations of Eq43), we get the
1} equation forM,,
0.01 1 \
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FIG. 6. Temperature dependences of real part of “high-

0o__ [0}
temperature” initial susceptibility of a ferrocolloid with chaifis) Un=Un(ao)- (45)
and with single individual particle®) at p=0.1, w 7°=1.5. Figures I . .
near curves(a) correspond to(1) y,=y/o=0.6, vo=3; (2) 7, For a weak oscillating magnetic field «

=agexplot) (ap<l), the projection of the momem , on

=1, yo=5. For curvedb) y,;=0.6. ) . k .
Yo sb) 71 the direction of the field is as follows:

Let us rewrite EQq(39) in the Langevin form, M= X, COL 6 expli ot),

dpn _ 1 dUy X,=X"—iX"
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The following Fokker-Planck equation corresponds to this
Langevin equation ul=upn(ud).
The parameterr,, is the characteristic time of opposite-
sense remagnetization of the chain. Estimates show that for
n=2 this time depends omvery weakly. If the period of the
where F,(u,) is the distribution function normalized to €xtérnal field is much more than,, it is a high-frequency
unity. Taking into account the presence of two deep pits irsignal for us. If the period is of the order of, or less, it is

the plot of the functior ,(u,) ande<1, we arrive at a low-frequency signal. _
Using Eq.(46) just as we have done with E¢37), we

arrive at the following expression for the effective complex
low-frequency susceptibility:
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Fn=P1o(mn— o) +P-(pnt o),

P,+P_=1. 42
i 42 X=X"—iX",
Using the Kramers method, we can easily obtain the fol-

lowing equation forP. : , 3 , , 3 p
9 €q * X =;y; X'ngw, X =—y; X'ngw  (47)

o
P W.P.+w.p
ar WPt WoP-, (we suppose again that the ferrocolloid was solidified in zero
field).
dP_ The results of calculations of the frequency dependences
ot - W-P_+W.P,, of X are given in Figs. 7 and 8. Unlike the situation with the

high-frequency susceptibility, the presence of chains in-
creases the low-frequency susceptibility and decreases the
frequencyw. corresponding to the maximum &f'. Hence,

two maxima instead of one can occur on the plot of fre-
quency dependence of the imaginary part of the solid ferro-
colloid susceptibility if heterogeneous chainlike aggregates
occur in the system. The distance between these maxima
increases with increasing magnetic interaction between the
particles.
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oo \/azuno 2U

0~ - y

2770\ dpp |, e dwun |, g
n n

E,= Uno(o)_Uno(Mg)-

061507-8



DYNAMICAL SUSCEPTIBILITY OF SOLID FERROCOLLOIDS PHYSICAL REVIEW B3 061507

| |
Xl/p XI/P X/p
10
a 2
2
5
] = 1
0 Nalen 8
0 0.02 004 0.06 0
ot°
FIG. 7. Frequency dependences of réal and imaginary(b)
parts of the low-frequency initial susceptibilities of a ferrocolloid 1
with chains(solid lineg and with separate particlédashed lines 0 5 10

wheno=5, y=vy,=4. Figures near curves are valuespof o
Figure 9 shows the temperature dependenceX’ofAn FIG. 9. Temperature dependences of the real part of the initial

increase of the interparticle interaction increases the temsusceptibility of a ferrocolloid with chains whenr®=0.02,p=0.1.

perature corresponding to the maximum of this function. ~ Figures near curves correspond @ y;=0.7, %,=3.5; (2) 7,
The plots ofw, as a function ofr andp are given in Fig. =0-8, vo=4.

10. This frequency depends very strongly on temperature

and, in contrast, weakly on the concentratpnit should be

noted that in[7,8] the results of measurements of the dy-

namical susceptibility of solid ferrocolloids were described

by the well-known empirical formula of Vogel-Fulcher for

VIlI. CONCLUSION

A theoretical analysis of the dynamical susceptibility of a
ferrocolloid taking account of the dipole-dipole interaction is
dipole-glass systems presented. Two kinds of system are studied. Th_e first is a

moderately concentrated homogeneous ferrocolloid; the sec-
ond is a ferrocolloid with heterogeneous chainlike aggre-
® ~ex;{ _ Ea ) gates. For a system of the first kind interparticle interaction
¢ T-Ty)’ increases both the real and imaginary parts of the dynamical
susceptibility and decreases the frequency of the signal cor-
whereE, is the Nel activation energy of the single particle, responding to the maximum of the imaginary part of the
T, is the temperature of the dipole-glass phase transitiogusceptibility. In experiments it should be evident as an in-
(this temperature was estimated[ih8] asTo~ p®, wheres  crease in the characteristic magnetization relaxation time of
=0.8[7] ands=0.4[8]). For this reason the results of,8] ~ the system.
were interpreted as evidence of existence of a glasslike state For systems with chainlike aggregates the characteristic
in colloids. The plots of Fig. 10 correspond to these forms oftime 7 of inverse remagnetization of the chain is of funda-
the Vogel-Fulcher law iff>T,. We would like to note that mental importance. If the period of the signal is much less
the measurements pf,8] were performed when the inequal- than 7. (high-frequency signal then the components of the
ity T>T, holds. Therefore, our estimates allow us to sup-corresponding complex susceptibility decrease with increas-
pose that the glasslike response of solid ferrocolloids to afg magnetodipole interaction of the particles. The frequency
external field can be explained as the effect of the presenceorresponding to the maximum of the imaginary part of the

of heterogeneous aggregates in these systems. complex susceptibility in this case increases., the charac-
teristic relaxation time decreage$ the period of the signal

| X! is of the order ofr. or larger, then an increase of interparticle
X/ /P
10 6
In(ws) In(e %)
a 0 -5.6
4 a b
5 -10 |=
) -5.65 |
20 =
- —
0 = 0 30 1 57 )
0 002 004 0.06 0 002 004 006 4 6
o . G 0 0.01 0.1
Ot ®T P

FIG. 8. The same as for Fig. 7 fa=0.05. Figures near curves

are values ofy= .

FIG. 10. Temperaturéa) and concentratiob) dependences of

w; at y1=0.8, yo=4.
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interaction leads to an increase in the components of thexperiments may be explained by the presence of heteroge-

susceptibility and to a decrease of the frequengycorre-  neous aggregates.

sponding to the maximum of its imaginary part. Therefore, Finally, we would like to note that our results are in quali-

the presence of heterogeneous aggregates in a solid ferrocgtive agreement with experimerits—3,6—§. At the same

loid should lead to the occurrence of two maxitiestead of  time, a quantitative agreement can hardly be expected, be-

ong in the frequency dependence of the imaginary part okbause commercial ferrofluids, used in experiments, are poly-

the susceptibility. A strengthening of the interparticle inter-disperse. The polydispersity of ferrocolloids affects their

aCtiO_n leads to an increase in the distance between thewacroscopic dynamica| properties very Strong|y_ However,

maxima. to understand the main physical consequences of the inter-
The frequencyw, of the maximum of the imaginary part particle interactions for the properties of these systems, one

of the low-frequency susceptibility of a colloid with chains needs, first, to analyze monodisperse models. That is the aim
decreases very quickiimuch more rapidly than for the col- of this work.

loid with separate particlgsas the temperature decreases.
With increasing concentration of particles also decreases,

b_ut more slowly. In_ a qualitative sense, our results are con- ACKNOWLEDGMENT
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