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Dynamical susceptibility of solid ferrocolloids

Andrey Yu. Zubarev and Larisa Yu. Iskakova
Ural State University, Lenina Avenue, 620083 Ekaterinburg, Russia

~Received 27 December 1999; published 24 May 2001!

A theoretical analysis of the dynamical magnetic susceptibility of a frozen nondilute ferrocolloid is pre-
sented. The steric and dipole-dipole interactions between ferroparticles are taken into account. Two systems are
studied. The first is the homogeneous solid ferrocolloid with separate individual particles. The second is a
ferrocolloid with heterogeneous chainlike aggregates. The effect of the magnetodipole interparticle interaction
on the real and imaginary parts of the dynamical susceptibilities of these systems is estimated.
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I. INTRODUCTION

The interest of investigators in systems of dipole partic
embedded in a solid matrix has increased in recent y
~see, for example, Refs.@1–8#!. A ferrocolloid ~magnetic liq-
uid! in a frozen solvent is an example of such a system.
soon as the solvent is frozen, both the space arrangeme
the ferromagnetic particles and the orientations of their a
of easy magnetization become fixed. Thus, the static
dynamical magnetic susceptibilities of such systems may
fer essentially from those of ferrocolloids in solvents in
liquid state.

The initial susceptibilities of very dilute solid ferroco
loids were studied in@4,5#. An analysis of the susceptibility
of moderately concentrated colloids taking into account
magnetodipole interaction between particles was perform
in Ref. @9#. Those calculations were made under the assu
tion that the magnetic interparticle interaction is small
moderate, and the external field is weak. However, exp
ments @6–8# demonstrate that in many real solid ferroco
loids these interactions play a very important role in the m
roscopic response to an external field. In the view of
authors of@6–8#, the results of their experiments sugges
dipole-glass state of the systems under study. However, v
ous heterogeneous aggregates~for example, chainlike, drop
like, etc.! can arise in the colloid if the magnetic interpartic
interaction is strong before freezing. The effect of these
gregates on the macroscopic properties of solid ferrocollo
is not understood theoretically. To study this effect is one
the aims of our work. Below it is shown that the presence
chainlike aggregates can induce effects similar to those
dipole-glass state.

As mentioned above, previously the dynamical susce
bilities of solid ferrocolloids have been studied theoretica
only for a very weak external field. However, the magne
field acting on the colloid is often not weak and thus acco
must be taken of the influence of the field on the dynam
response functions of the colloid. The second aim of t
work is to derive the nonlinear response functions to mod
ate magnetic fields of homogeneous moderately concentr
ferrocolloids.

Consider a system ofN identical spherical single-domai
particles. The absolute valuem of the magnetic moment of a
particle is constant. The colloid becomes frozen instan
neously; therefore the space arrangement of the particles
1063-651X/2001/63~6!/061507~10!/$20.00 63 0615
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the orientation of their axes of light magnetization aft
freezing remain as before.

II. HOMOGENEOUS FERROCOLLOIDS

The initial susceptibility of ferrocolloids solidified in a
magnetic field arbitrary in both magnitude and direction ha
been studied in Ref.@9#. In this part of the article we focus
our attention on systems frozen in a high magnetic field.
this reason the easy axes of magnetization of all particle
the solid colloid are aligned along the field. We suppose t
the current magnetic field has the same direction.

Let ei be the unit vector aligned along the magnetic m
mentmi of the i th particle, andf 1(e) the one-particle distri-
bution function normalized to unity. The macroscopic ma
netization of the colloid is

M5mĉ e&,
~1!

^e&5E ef 1~e!de,

where c is the number of particles in unit volume of th
colloid.

The distribution functionf 1 can be derived using the
Fokker-Planck equation,

] f 1

]t
5zJ~ f 1Ju1!1zJ~ f 1Ju2!1DJ2f 1 ,

u1~e!52T~ae!1ua , u2~e!5NU~e!, ~2!

a5
mH

T
, D5zT, J5Fe,

]

]eG .
Herez is a kinetic coefficient,T is the absolute temperatur
in energy units,H is the external magnetic field,ua(e) and
u1(e) are the energy of magnetic anisotropy of a particle a
the total energy of a particle in the fieldH, andU(e) is the
mean energy of dipole-dipole interaction of a given parti
with the others.
©2001 The American Physical Society07-1
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Directing the axisOz along the current magnetic fiel
~and, therefore, along the easy axis of magnetization of
particle! and using the well-known approximation forua , we
can write

ua52Kez
2 , ~3!

whereK is the coefficient of magnetic anisotropy of the pa
ticle. By definition

U~e!5E w~e,e1 ,r ! f 2~e1 ,r ue!de1dr . ~4!

Herew is the dipole-dipole interaction potential of two pa
ticles with orientation vectorse ande1 , r is the radius vector
connecting them, andf 2 is the conditional binary distribution
function. In order to determinef 2 we need to formulate a
two-particle Fokker-Planck equation, which involves a thre
particle equation, etc.

Here, as in Ref.@9#, we assume the interparticle intera
tion to be moderate or weak. Therefore, in the first appro
mation for this interaction we come to

f 2~e1 ,r ue!5
1

V
p~e1!, r .2a,

~5!

f 250, r ,2a,

wherea is the radius of the particle,V is the volume of the
colloid, and p is the single-particle distribution functio
without the interparticle interaction. The last condition in E
~5! takes into account that the particles do not overlap.

The Fokker-Planck equation forp is

]p

]t
5zJ~pJu1!1DJ2p. ~6!

The exact solution of this equation is unknown. Here
consider particles with a large magnetic anisotropy for wh
the strong inequalitiess5K/T@1, s@a hold good.

Since s@1, the probabilities for the particles to be
statesez561 are much greater than those for other sta
Therefore in the first approximation of the small parame
1/s we can write

p~e,t !5n1~ t !d~ez21!1n2~ t !d~ez11!,
~7!

n1~ t !1n2~ t !51,

whered(x) is the delta function andn6 are probabilities for
the particle to be in statesez561, respectively.

Repeating the reasoning of Ref.@5#, and taking into ac-
count thata!s, we arrive at the relations
06150
e

-

i-

.

e
h

s.
r

n6~ t !5
1

q~ t ! Fn6~0!q~0!1E
0

t

W7~s!q~s!dsG ,
q~ t !5expS E

0

t

@W1~s!1W2~s!#dsD ,

~8!

W65C6 exp@2~s6a!#,

C65zT~6a12s!S s

p D 1/2

.

Substituting Eq.~7! into Eq. ~5! and then into Eq.~4!, after
calculations described in Ref.@9#, we get

U52
v
V

8ge1z@n1~ t !2n2~ t !#,

~9!

v5
4p

3
a3, g5

m2

~2a!3T
.

The dimensionless parameterg characterizes the ratio of th
energy of the dipole-dipole interaction of two closely spac
particles to the thermal energy of the system.

Inserting Eq.~7! into the second relation of Eq.~3! and
then into Eq.~2!, taking into account that now (ae)5aez ,
one can rewrite Eq.~2! as follows:

] f 1

]t
5zJ~ f 1Ju1e!1DJ2f 1 ,

u1e52~aee!1ua , ~10!

ae~ t !5a~ t !18rg@n1~ t !2n2~ t !#.

Here r5cv is the volume concentration of the particle
Equation~10! coincides formally with Eq.~6! with the effec-
tive dimensionless fieldae instead of the real fielda.

Repeating arguments identical to those for Eq.~7!, we can
write

f 1~e,t !5q1~ t !d~ez21!1q2~ t !d~ez11!, q11q251.
~11!

The expressions forq6 can be obtained from Eq.~8! for n6

by using the effective fieldae instead ofa.
Substituting Eq.~11! into Eq. ~1!, we have

^ez&~ t !5q1~ t !2q2~ t !, M ~ t !5m
r

v
^ez&~ t !. ~12!

Thus, in order to calculate the magnetizationM we need,
first, to determinen6 . Second, taking into account Eqs.~10!
and~8!, we deriveq6 ~to do this, we replacen6 by q6 and
a by ae) and, finally, use relations~12!.
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III. NONLINEAR RESPONSE OF HOMOGENEOUS
FERROCOLLOIDS TO AN OSCILLATING FIELD

The foregoing procedure can be realized numerically
arbitrarya(t)(a!s). Here we study the nonlinear respon
to a moderate or weak oscillating field,

a~ t !5a0 cosvt, a0,1. ~13!

Neglecting terms of magnitude of the order ofa0 /s and
less, using Eq.~8! we can easily obtain

W1~s!1W2~s!5t0
21 cosha~s!,

W1~s!2W2~s!5t0
21 sinha~s!, ~14!

t05to
exp~s!

k1/2
, to5

p1/2

4zK
.

In a quadratic approximation ina we get

q~s!

q~ t !
5expS 1

t0
E

t

s

cosha~y!dyD
5expS s2t

t0
D S 11

1

2t0
E

t

s

a2~s!dsD ,

E
0

t

@W2~s!2W1~s!#ds

5
exp~2t/t0!

t0
E

0

t

expS s

t0
Da~s!

3S 11
1

6
a2~s!1

1

2tEt

s

a2~y!dyD , ~15!

n1~ t !2n2~ t !5@n1o~ t !2n2o~ t !#

3expS 2
t

t0
D S 11

1

2t0
E

0

s

a2~s!dsD
1

exp~2t/t0!

t0
E

0

t

expS s

t0
Da~s!

3S 11
1

6
a2~s!1

1

2t0
E

t

s

a2~y!dyD ,

wheren6o are random initial values ofn6 . Substituting Eq.
~13! into Eq. ~15!, after simple but cumbersome calculatio
we have fort@t

n1~ t !2n2~ t !5a0~b181a0
2w8!cosvt1a0

3~b191a0
2w9!sinvt1a0

3b28 cos 3vt

1a0
3b29 sin 3vt,
06150
r

b185
1

11~vt!2
, b195

vt

11~vt!2
,

w85p1F S p22
1

2
b18D p31

1

2

~b19!2

p1
G ,

~16!

w95vtp1F S p21
1

2
b18D p32

1

2

~b18!2

p1
G ,

b285b18p1S p2

4b18
1

3

8
~vt!2D , b295b19p1S 3

4
p22

1

8D ,

p15
1

119~vt!2
, p25

1

6
2

1

4~11~vt!2!
,

p35
3

4
16

~vt!2

11~vt!2
.

Substituting Eq.~16! into Eq.~9! and then into Eq.~10!, and
usingae instead ofa in Eq. ~15!, we determineq1 andq2 .
Having performed calculations in the cubic approximation
a0 for t@t0, we obtain

^ez&5a0~B181a0
2F8!cosvt1a0~B191a0

2F9!sinvt

1a0
3B28 cos 3vt1a0

3B29 sin 3vt, ~17!

where

B185b1818rg@~b18!21L18#,

B195b1918rg~b18b191L19!,

F85w818rg~4b18w181L28!,

F95w918rg~3b18w81b19w181L29!,

B285b2818rgS 3b18b281L381
b2823vtb29

11~3vt!2 D ,

B295b2918rgS 3b18b291L391
b2913vtb18

11~3vt!2 D ,

L1852~b19!2, L195b18b19 ,

L285vt$@p1p3~ 1
4 b181p2!2p2b18#2w19b18%,

L295$p1p3@p21 1
4 ~vt!2b18#1p2b19%)1b18w9,

L385vt
p1b19

4 S 1

4
b1823p2D ,

L395
p1b19

4 S 3

4
~vt!2b181p2D .
7-3
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ANDREY YU. ZUBAREV AND LARISA YU. ISKAKOVA PHYSICAL REVIEW E 63 061507
Let us expand the magnetization in a Fourier series,

M ~ t !5(
n

@Mn8 cos~vnt!1Mn9 sin~vnt!#, ~18!

and denote

xn8~v!5
Mn8

H0
, xn9~v!5

Mn9

H0
. ~19!

Equations~19! are the definitions of the nonlinear realxn8
and imaginaryxn9 parts of the dynamical response functio
corresponding to the frequencynv multiplied by the signal
frequencyv. Using Eq.~17!, we have

x185s~B181a0
2F8!gs ,

x195s~B191a0
2F9!gs ,

x385a0
2sB28gs , ~20!

x395a0
2sB29gs ,

gs5
m2n

K
5

6rg

s
.

The results of some calculations ofx18 andx19 are given in
Figs. 1 and 2. Relations~20! and Figs. 1 and 2 allow us to
draw the following conclusions. First, the initial (a0→0)
response functionsx1 corresponding to the signal frequenc
have the Debye form with the characteristic timet0 provided
that the interparticle dipole-dipole interaction is negligib
~rg→0!. If a0 and~or! rg are not negligible, these respon
functions lose the Debye form. It should be stressed that
result is mathematically strict. It is also interesting to no
that the initial susceptibility of a nondilute liquid ferrocolloi
has the Debye form with the relaxation time depending
rg @10,11#.

Second, the functionsx3 corresponding to the response
the frequency 3v lack the Debye form even in the absence

FIG. 1. Real~a! and imaginary~b! parts of the normalized dy
namical susceptibility of a homogeneous ferrocolloid to the sig
frequencyv vs this frequency whens51. Solid and dashed curve
correspond tog50 and 8pgr51, respectively. Figures near curve
are values ofa0.
06150
is

n

f

interparticle interaction. Our estimations show that if t
field a is not largex3 are much less thanx1.

Figure 1 shows that the interparticle interaction increa
the response functionx18 when v is small enough. Such a
result for the stationary susceptibility of liquid ferrocolloid
is well known~see, for example, Refs.@10–13#!. The imagi-
nary part x19 of the susceptibility to the signal frequenc
increases, whereas the frequency corresponding to the m
mum of x19 decreases when the productrg increases. This
means that an increase of magnetic interparticle interac
in homogeneous ferrocolloids leads to an increase of the
fective time of magnetic relaxation of these systems.

Figure 2 shows that the temperature dependences ox18
andx19 have maxima. This conclusion is consistent with t
results of experiments@1–3,6–8#. The temperatures of thes
maxima increases with increasing interparticle interaction
should be noted that these maxima were interpreted in@2# as
signs of a dipole-glass state in the solid ferrocolloid. Ho
ever, they occur even in a single-particle approximati
Therefore, to explain the temperature maxima ofx it is not
necessary to use the hypothesis of a dipole-glass state o
ferrocolloid.

IV. FERROCOLLOIDS WITH CHAINLIKE AGGREGATES:
MODEL AND DISTRIBUTION FUNCTION OVER THE

CHAIN SIZE

Let us consider an equilibrium liquid magnetic ferroco
loid with chainlike aggregates. Here we adopt the followi
assumptions. First, we assume that the volume concentra
r of the particles is small and any interaction between p
ticles in different chains may be neglected. Second, we t
the chains as straight aggregates consisting of contacting
ticles and ignore the fluctuations in their shape. The con
tions of validity of this approximation will be determine
further. Third, we suppose that the colloid was solidifi
rapidly and in the solid state it has the same inner struc
as in the liquid state. Next, we assume that in the liquid s
the dipole-dipole interaction between contacting particles

l
FIG. 2. Temperature dependence of the normalized compon

of the susceptibility of a homogeneous ferrocolloid on the sig
frequency whenvt050.1. Solid and dashed curves correspond
x58rm2/(vK)50 and 0.25, respectively. Figures near curves
values of dimensionless field amplitudea05a0 /s.
7-4
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DYNAMICAL SUSCEPTIBILITY OF SOLID FERROCOLLOIDS PHYSICAL REVIEW E63 061507
large and the inequalitiesg@a,g@1 hold good.
Treating the chains as heterogeneous fluctuations and

ing the well-known Frenkel theory@14# of such fluctuations,
we represent the free energy per unit volume of the liq
ferrocolloid as follows:

F5T(
n

Fgn lnS gnv
e D1gnf nG . ~21!

Here n is the number of particles in the chain,gn is the
number ofn-particle chains in the unit volume, andf n is the
‘‘internal’’ energy of the chain. The first term in brackets
Eq. ~21! stands for the entropy of a gas ofn-particle chains
due to their translational motion.

In order to calculatef n we use the nearest-neighbor a
proximation, taking into account the dipole-dipole intera
tion only between directly adjacent particles in the cha
Simple estimates show that for an unlimited straight ch
the relative error of this approximation is less than 20%. F
short chains the error is smaller.

Because the dipole-dipole interaction parameterg is large,
one can suppose that the magnetic moments of all part
are aligned in one direction—along the chain axis. The
fore, the n-particle chain can be represented as a stra
aggregate with the magnetic momentmn directed along the
axis of this aggregate.

The dimensionless free energy of interaction of this
gregate with the magnetic field is

f m52 ln
sinh~an!

an
.

In the nearest-neighbor approximation the dimensionless
ergy of the dipole-dipole interactions of all particles in t
chain is

f d522g~n21!.

The total internal free energy is

f n5 f m1 f d52S ln
sinh~an!

an
12g~n21! D . ~22!

It should be noted that it is not difficult to estimatef d
without the nearest-neighbor approximations, taking into
count the magnetodipole interactions of all particles in
chain. The results obtained are quantitatively close to o
but the relations forf d and f n become very cumbersome. Fo
this reason we use the simple and physically adequate
proximation~22!.

At equilibrium the distribution functiongn should mini-
mize F under the normalization condition

(
n

ngn5
r

v
. ~23!

After calculations we have

gn5
xn

v
sinh~an!

an
exp~22g!, ~24!
06150
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where

x5
2y cosha1sinha2A~2y cosha1sinha!224y2

2y
,

y5ar exp~2g!. ~25!

The mean number of particles in the chain is

^n&5

(
n

ngn

(
n

gn

5
ar exp~2g!

(
n

@xn sinh~an!/n#

. ~26!

Using well-known results from the theory of polyme
chains, one get the estimatel;2dg for the persistent length
l of the chain. Thermal fluctuations in shape for such a s
ation are small and therefore the chain can be treated
straight rod. Ifl .d^n&, this approximation is acceptable fo
the ensemble of chains. Thus we can use the following
terion for the model of the chains as straight aggregates

^n&,2g.

Let us denote byrc the particle volume concentration fo
which ^n&52g. If r,rc , then^n&,2g and the model can
be used. The results of calculations ofrc for zero field are
shown in Fig. 3.

V. HIGH-FREQUENCY SUSCEPTIBILITY OF SOLID
FERROCOLLOIDS WITH CHAINS

Let us consider ann-particle straight chain directed at th
angle u to the external field. Let the strong inequalitie
s@1@a hold good. Because in the liquid state of the collo
when the chains are formed, the energies of both interpar
interaction and magnetic anisotropy of the particles are la
we can suppose that the easy axes of magnetization o
particles in the chain are aligned along the chain axis.

In the framework of accepted approximations the ene
of one particle in the chain is

FIG. 3. Critical volume concentrationrc of ferroparticles for the
model of straight chain aggregates, as a function of the dimens
less interparticle interaction parameterg0, which is the value ofg at
the temperature of solidification.
7-5
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«~e!52Fm~e•H!1K~en!21(
j

m2

~2a!3 j 3

3@3~ej j !~ejj j !2~e•ej !#G ,

e5
m

m
, ej5

mj

m
, m5umu5umj u5const. ~27!

Herem andmj are the magnetic moments of a given and
j th particle in the chain, respectively,j is the unit vector
directed from the center of the given particle to the cente
the j th particle, andn is the unit vector aligned along th
easy axis of magnetization of the particle. The summatio
performed over all particles in the chain except the one un
consideration.

Because the energy of magnetic anisotropy of the part
is large, two deep potential pits arise corresponding to or
tation of the particle magnetic moment along and opposit
vectorn. Hence, as above, the orientation distribution fun
tion w(e) can be written as

w~e!5p1d~e2n!1p2d~e1n!, p11p251, ~28!

wherep6 are the probabilities for the particle to be in stat
e56n, respectively.

These probabilities can be determined using the appro
ate Fokker-Planck equation for the given particle. This eq
tion includes the energy«. Because of the dipole-dipole in
teraction term in Eq.~27!, this one-particle Fokker-Planc
equation involves a similar two-particle equation, and so

In order to break this chain of equations and to ge
constructive approximate solution, let us average Eq.~27!
over all orientations of the moments of all particles in t
chain except the one under consideration. After this ave
ing Eq. ~27! can be rewritten as

«52TF ~ea!1s~ea!21g(
j

1

j 3
@3~ej j !~mnj j !2~emn!#G ,

a5
mH

T
, s5

K

T
, g5

m2

~2a!3T
, ~29!

wheremn5^e& i is the mean value of the unit vector of th
moment orientation in the chain.

Writing in the Fokker-Planck equation~6! w instead ofp
and « instead ofu1, and using the Kramers method an
repeating the reasoning of Ref.@5#, we get

dp1

dt
52w1p11w2p2 ,

dp2

dt
52w2p21w1p1 . ~30!

Here

w15w0 exp~2s1a cosu1mgbn!,
06150
e

f

is
er
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n-
to
-

ri-
-

.
a

g-

w25w0 exp~2s2a cosu2mgbn!,

bn5
1

n (
k, j , j Þk

1

u j 2ku3
,

w05j
~2K !3/2

~2pT!1/2
.

The summation in Eq.~29! is carried out over all particles
in the chain. Strictly speaking, the energy of interaction o
given particle with the others depends on its place~number
k) in the chain. Therefore, the parameterbnk5( j , j Þku j
2ku23 must be used here instead ofbn . To simplify calcu-
lations we use the mean valuebn of bnk over all particles.

In the framework of the approximation used the proje
tion of the mean orientation vector of then-particle chain on
the chain axis is

mn5p12p2 . ~31!

Combining Eqs.~30! and ~31!, we arrive at the following
nonlinear equation formn :

dmn

dt
52

1

t0
@mn cosh~aH1bngmn!2sinh~aH1bngmn!#,

t05to
exp~s!

s1/2
, to5

p1/2

jK
, aH5a cosu. ~32!

When a50, the stationary solution of Eq.~32! satisfies
the equation

m05tanh~bngm0!. ~33!

If the productbng is large enough~only for this situation can
one expect the occurrence of chains in a colloid!, this equa-
tion has a nonzero solution. That is, this is the case of in
est to us.

Let us writexn5mn2m0. If uxnu!m0 anda!1, Eq.~32!
can be rewritten as

dxn

dt
52

1

t1n
xn1aH

1

t0 cosh~bngm0!
,

~34!

t1n5
t0

cosh~bngm0!$11gbn@m0 tanh~bngm0!21#%
.

The dynamical equations~32! and ~34! describe response o
the chain to a weak external field whenmn is in the vicinity
of the initial equilibrium value6m0. This means that the
period of the oscillating field must be much less than
characteristic time of reorientation ofmn in the direction op-
posite to the initial direction of this vector. This time will b
estimated below.

Let a5a0 exp(ivt). The projectionxHn of x on the direc-
tion of this field is
7-6
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xHn5xn cos2 u, xn5kna0 cos2 u exp~ ivt !,

kn5kn82 ikn9 , kn85
t1n

o

t0 cosh~bngm0
o!

1

11~vt1n
o !2

,

kn95vt1n
o kn8 . ~35!

In order to determine the high-frequency complex susce
bility x of the colloid, one needs to average relation~35!
over all orientations and sizes of the chains.

For the sake of definiteness, let us suppose that this
loid was solidified in zero magnetic field. Therefore, t
probabilities of allu are identical. In view of this fact, we ge
for the macroscopic magnetization

M5
m

2 (
n

xnngn5xH. ~36!

Substitutingxn from Eq. ~35! into Eq. ~36!, we arrive at the
following expression for the effective complex high
frequency susceptibility:

x5
3

p
gv(

n
knngn . ~37!

Using Eqs.~24! and~25!, we find the distribution functiongn
for the colloid frozen in zero field:

gn5x0
n exp~22g0!,

~38!

x05
112y02A114y0

2y0
, y05r exp~2g0!.

Here and belowg0 is the value ofg at the temperature o
colloid solidification.

The frequency dependences of the realx8 and imaginary
x9 parts ofx are given in Figs. 4 and 5. These figures de
onstrate that an increase of interparticle interaction leads
decrease of susceptibility normalized tor provided that the
signal frequency is small enough. It is a somewhat unus
result because, as a rule, the magnetodipole interaction

FIG. 4. Frequency dependences of real~a! and imaginary~b!
parts of the high-frequency initial dynamical susceptibility of a fe
rocolloid with chains~solid lines! and with single individual par-
ticles ~dashed lines! when s55, g053, g53. Figures near curves
are values ofr.
06150
i-

l-

-
a

al
in-

creases the susceptibility of ferrocolloids~see, for example,
Refs.@9–13# and Figs. 1 and 2!. In order to explain this case
let us rewrite Eq.~32! for small a as follows:

dmn

dt
52

1

t0

dUn

dt
,

Un5Un01aHun ,
~39!

Un05E @mn cosh~bngmn!2sinh~bngmn!#dmn ,

un5E @mn sinh~bngmn!2cosh~bngmn!#dmn .

Due to the strong inequalitybng@1 the effective poten-
tial Un0 as a function ofmn has two deep pits and a hig
barrier between them. These pits correspond to soluti
6m0 of Eq. ~33!. When the productbng increases, the shap
of the potentialUn0 near 6m0 becomes sharper and th
valueun(m0) decreases. The relaxation ofmn to 6m0, there-
fore, becomes faster~the timet1n decreases! and it is more
difficult for the external field to make a deflectionmn from
its initial value. Therefore, the corresponding susceptibi
decreases. It should be noted that a decrease of the in
susceptibility ~normalized tor! of solid ferrocolloids was
observed in the experiments of Ref.@8#.

The temperature dependences ofx8 are shown in Fig. 6.
The temperature corresponding to the maximum ofx8 is seen
to increase with an increase of the interparticle interactio

VI. LOW-FREQUENCY SUSCEPTIBILITY

In this section we will estimate the ferrocolloid comple
susceptibility corresponding to the response to a magn
field with a period that is less than or of the order of t
characteristic time of crossing over the barrier of the eff
tive potentialUn0. This time will be estimated.

As mentioned above, the dynamical equation~39! cannot
describe this crossing, which can take place only due to
action of thermal fluctuations ofmn . In order to take them
into account we use the method of random forces.

FIG. 5. The same as in Fig. 4 whenr50.05. Figures near curve
correspond tog5g0.
7-7
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Let us rewrite Eq.~39! in the Langevin form,

dmn

dt
52

1

t0

dUn

mn
1z~ t !,

^z~ t !&50, ^z~ t !z~ t8!&5A2Bd~ t2t8!, ~40!

B5
T

t0
.

The following Fokker-Planck equation corresponds to t
Langevin equation

]Fn

]t
5

]

]mn
S Fnt0

21 dUn

dmn
D1B

]2

]mn
2

Fn , ~41!

where Fn(mn) is the distribution function normalized t
unity. Taking into account the presence of two deep pits
the plot of the functionUn(mn) anda!1, we arrive at

Fn5P1d~mn2m0!1P2d~mn1m0!,

P11P251. ~42!

Using the Kramers method, we can easily obtain the
lowing equation forP6 :

dP1

dt
52W1P11W2P2 ,

dP2

dt
52W2P21W1P1 ,

W65W0 exp$aH@6un~m0
o!2un~0!#2En%, ~43!

W05
1

2pt0
A]2Un0

]mn
2 U

mn5m
0
o
S 2

]2Un0

]mn
2 U

mn50
D ,

En5Un0~0!2Un0~m0
o!.

FIG. 6. Temperature dependences of real part of ‘‘hig
temperature’’ initial susceptibility of a ferrocolloid with chains~a!
and with single individual particles~b! at r50.1,vto51.5. Figures
near curves~a! correspond to~1! g15g/s50.6, g053; ~2! g1

51, g055. For curves~b! g150.6.
06150
s

n

l-

By definition, the mean moment of the particle in the chain

Mn5E mnFndmn5P12P2 . ~44!

Combining the first two relations of Eq.~43!, we get the
equation forMn ,

dMn

dt
52Mn~W11W2!1W22W1

'2Mn2W0 exp~2En!1aHun
o2W0 exp~2En!,

un
o5un~m0

o!. ~45!

For a weak oscillating magnetic field a
5a0 exp(ivt) (a0!1), the projection of the momentMn on
the direction of the field is as follows:

MHn5Xna0 cos2 u exp~ ivt !,

Xn5Xn82 iXn9 ,

Xn85
un

o

11~vt2n!2
, Xn95

un
ovt2n

11~vt2n!2
, ~46!

t2n5
exp~En!

2W0
,

un
o5un~m0

o!.

The parametert2n is the characteristic time of opposite
sense remagnetization of the chain. Estimates show tha
n>2 this time depends onn very weakly. If the period of the
external field is much more thant2n , it is a high-frequency
signal for us. If the period is of the order oft2n or less, it is
a low-frequency signal.

Using Eq. ~46! just as we have done with Eq.~37!, we
arrive at the following expression for the effective compl
low-frequency susceptibility:

X5X82 iX9,

X85
3

p
g(

n
Xn8ngnv, X95

3

p
g(

n
Xn9ngnv ~47!

~we suppose again that the ferrocolloid was solidified in z
field!.

The results of calculations of the frequency dependen
of X are given in Figs. 7 and 8. Unlike the situation with th
high-frequency susceptibility, the presence of chains
creases the low-frequency susceptibility and decreases
frequencyvc corresponding to the maximum ofX9. Hence,
two maxima instead of one can occur on the plot of f
quency dependence of the imaginary part of the solid fe
colloid susceptibility if heterogeneous chainlike aggrega
occur in the system. The distance between these max
increases with increasing magnetic interaction between
particles.

-

7-8
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Figure 9 shows the temperature dependences ofX8. An
increase of the interparticle interaction increases the t
perature corresponding to the maximum of this function.

The plots ofvc as a function ofs andr are given in Fig.
10. This frequency depends very strongly on tempera
and, in contrast, weakly on the concentrationr. It should be
noted that in@7,8# the results of measurements of the d
namical susceptibility of solid ferrocolloids were describ
by the well-known empirical formula of Vogel-Fulcher fo
dipole-glass systems

vc;expS 2
Ea

T2T0
D ,

whereEa is the Néel activation energy of the single particle
T0 is the temperature of the dipole-glass phase transi
~this temperature was estimated in@7,8# asT0;rs, wheres
50.8 @7# ands50.4 @8#!. For this reason the results of@7,8#
were interpreted as evidence of existence of a glasslike s
in colloids. The plots of Fig. 10 correspond to these forms
the Vogel-Fulcher law ifT@T0. We would like to note that
the measurements of@7,8# were performed when the inequa
ity T.T0 holds. Therefore, our estimates allow us to su
pose that the glasslike response of solid ferrocolloids to
external field can be explained as the effect of the prese
of heterogeneous aggregates in these systems.

FIG. 7. Frequency dependences of real~a! and imaginary~b!
parts of the low-frequency initial susceptibilities of a ferrocollo
with chains~solid lines! and with separate particles~dashed lines!
whens55, g5g054. Figures near curves are values ofr.

FIG. 8. The same as for Fig. 7 forr50.05. Figures near curve
are values ofg5g0.
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VII. CONCLUSION

A theoretical analysis of the dynamical susceptibility of
ferrocolloid taking account of the dipole-dipole interaction
presented. Two kinds of system are studied. The first i
moderately concentrated homogeneous ferrocolloid; the
ond is a ferrocolloid with heterogeneous chainlike agg
gates. For a system of the first kind interparticle interact
increases both the real and imaginary parts of the dynam
susceptibility and decreases the frequency of the signal
responding to the maximum of the imaginary part of t
susceptibility. In experiments it should be evident as an
crease in the characteristic magnetization relaxation time
the system.

For systems with chainlike aggregates the character
time tc of inverse remagnetization of the chain is of fund
mental importance. If the period of the signal is much le
thantc ~high-frequency signal!, then the components of th
corresponding complex susceptibility decrease with incre
ing magnetodipole interaction of the particles. The frequen
corresponding to the maximum of the imaginary part of t
complex susceptibility in this case increases~i.e., the charac-
teristic relaxation time decreases!. If the period of the signal
is of the order oftc or larger, then an increase of interpartic

FIG. 9. Temperature dependences of the real part of the in
susceptibility of a ferrocolloid with chains whenvto50.02,r50.1.
Figures near curves correspond to~1! g150.7, g053.5; ~2! g1

50.8, g054.

FIG. 10. Temperature~a! and concentration~b! dependences o
vc at g150.8, g054.
7-9
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interaction leads to an increase in the components of
susceptibility and to a decrease of the frequencyvc corre-
sponding to the maximum of its imaginary part. Therefo
the presence of heterogeneous aggregates in a solid ferr
loid should lead to the occurrence of two maxima~instead of
one! in the frequency dependence of the imaginary part
the susceptibility. A strengthening of the interparticle inte
action leads to an increase in the distance between t
maxima.

The frequencyvc of the maximum of the imaginary par
of the low-frequency susceptibility of a colloid with chain
decreases very quickly~much more rapidly than for the col
loid with separate particles! as the temperature decrease
With increasing concentration of particlesvc also decreases
but more slowly. In a qualitative sense, our results are c
sistent with the variants of the empirical Vogel-Fulcher la
for dipole glasses that were used in@7,8#. This allows us to
make the proposal that the glasslike behavior of the dyna
cal susceptibility of solid ferrocolloids detected in a body
.

.
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lad

06150
e
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f
-
se

.

-
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f

experiments may be explained by the presence of heter
neous aggregates.

Finally, we would like to note that our results are in qua
tative agreement with experiments@1–3,6–8#. At the same
time, a quantitative agreement can hardly be expected,
cause commercial ferrofluids, used in experiments, are p
disperse. The polydispersity of ferrocolloids affects th
macroscopic dynamical properties very strongly. Howev
to understand the main physical consequences of the in
particle interactions for the properties of these systems,
needs, first, to analyze monodisperse models. That is the
of this work.
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